10,735 research outputs found

    Products of two proportional primes

    No full text

    Resurrecting Minimal Yukawa Sector of SUSY SO(10)

    Full text link
    Supersymmetric SO(10)SO(10) models with Yukawa coupling matrices involving only a 10H10_H and a 126H\overline{126}_H of Higgs fields can lead to a predictive and consistent scenario for fermion masses and mixings, including the neutrino sector. However, when coupled minimally to a symmetry breaking sector that includes a 210H210_H and a 126H126_H, these models lead either to an unacceptably small neutrino mass scale, or to non-perturbative values of the gauge couplings. Here we show that with the addition of a 54H54_H to the symmetry breaking sector, the successful predictions of these models for fermion masses and mixings can be maintained. The 54H54_H enables a reduction of the BLB-L symmetry breaking scale to an intermediate value of order 101210^{12} GeV, consistent with the observed neutrino mass spectrum, while preserving perturbative gauge coupling unification. We obtain an excellent fit to all fermion masses and mixings in this framework. We analyze carefully the prediction of the model for CP violation in neutrino oscillations. Consistency with proton lifetime, however, requires a mini-split SUSY spectrum with the squarks and sleptons having masses of order 100 TeV, accompanied by TeV scale gauginos and Higgsinos. Such a spectrum may arise from pure gravity mediation, which would predict the partial lifetime for the decay pνK+p \rightarrow \overline{\nu} K^+ to be an order of magnitude above the current experimental limit.Comment: 29 pages, 3 figures, replacement to match the published versio

    Numerical simulation of Faraday waves

    Full text link
    We simulate numerically the full dynamics of Faraday waves in three dimensions for two incompressible and immiscible viscous fluids. The Navier-Stokes equations are solved using a finite-difference projection method coupled with a front-tracking method for the interface between the two fluids. The domain of calculation is periodic in the horizontal directions and bounded in the vertical direction by two rigid horizontal plates. The critical accelerations and wavenumbers, as well as the temporal behaviour at onset are compared with the results of the linear Floquet analysis of Kumar and Tuckerman [J. Fluid Mech. 279, 49-68 (1994)]. The finite amplitude results are compared with the experiments of Kityk et al. [Phys. Rev. E 72, 036209 (2005)]. In particular we reproduce the detailed spatiotemporal spectrum of both square and hexagonal patterns within experimental uncertainty

    On-Line Learning Theory of Soft Committee Machines with Correlated Hidden Units - Steepest Gradient Descent and Natural Gradient Descent -

    Full text link
    The permutation symmetry of the hidden units in multilayer perceptrons causes the saddle structure and plateaus of the learning dynamics in gradient learning methods. The correlation of the weight vectors of hidden units in a teacher network is thought to affect this saddle structure, resulting in a prolonged learning time, but this mechanism is still unclear. In this paper, we discuss it with regard to soft committee machines and on-line learning using statistical mechanics. Conventional gradient descent needs more time to break the symmetry as the correlation of the teacher weight vectors rises. On the other hand, no plateaus occur with natural gradient descent regardless of the correlation for the limit of a low learning rate. Analytical results support these dynamics around the saddle point.Comment: 7 pages, 6 figure

    On the Shapley-like Payoff Mechanisms in Peer-Assisted Services with Multiple Content Providers

    Full text link
    This paper studies an incentive structure for cooperation and its stability in peer-assisted services when there exist multiple content providers, using a coalition game theoretic approach. We first consider a generalized coalition structure consisting of multiple providers with many assisting peers, where peers assist providers to reduce the operational cost in content distribution. To distribute the profit from cost reduction to players (i.e., providers and peers), we then establish a generalized formula for individual payoffs when a "Shapley-like" payoff mechanism is adopted. We show that the grand coalition is unstable, even when the operational cost functions are concave, which is in sharp contrast to the recently studied case of a single provider where the grand coalition is stable. We also show that irrespective of stability of the grand coalition, there always exist coalition structures which are not convergent to the grand coalition. Our results give us an important insight that a provider does not tend to cooperate with other providers in peer-assisted services, and be separated from them. To further study the case of the separated providers, three examples are presented; (i) underpaid peers, (ii) service monopoly, and (iii) oscillatory coalition structure. Our study opens many new questions such as realistic and efficient incentive structures and the tradeoffs between fairness and individual providers' competition in peer-assisted services.Comment: 13 pages, 4 figures, an extended version of the paper to be presented in ICST GameNets 2011, Shanghai, China, April 201
    corecore